
1

Copyright 2011 MRI Software. Any unauthorized use or reproduction of this document is strictly prohibited. All Rights Reserved.

Database Schema

Training Guide

Version 4.0

2

Copyright 2011 MRI Software. Any unauthorized use or reproduction of this document is strictly prohibited. All Rights Reserved.

3

Copyright 2011 MRI Software. Any unauthorized use or reproduction of this document is strictly prohibited. All Rights Reserved.

Under the Hood: MRI Database Schema

Agenda

Objectives

MRI System Tables

MRITABLE

MRIFIELD

MRIINDEX

MRIRELN

General Ledger

GLCD

GACC

JOURNAL

GHIS

GLSUM

ENTITY

PERIOD

BMAP

Accounts Payable

BANK

VEND

SESS

INVC

HIST

SCHK

4

Copyright 2011 MRI Software. Any unauthorized use or reproduction of this document is strictly prohibited. All Rights Reserved.

Commercial Management

BLDG

CMPD

SUIT

MOCCP

LEAS

CMRECC

INCH/SECINCH

GLMT/SECGLMT

Residential Management

RMPROP

RMPD

RMBLDG

UNIT

RMLEASE

RMRECC

NAME

PROSPECT

CHGCODE

CLSS

SCHD

CM/RM Transactions

CMBTCH

CMRCPT/CMMISC/CMBNONT

CMLEDG

CMLEDGAPPLY

RMBTCH

RMRCPT/RESCHGCRD/RMBMISC/RMSDADJ

RMLEDG

RMLEDGAPPLY

Questions and Answers

Under the Hood: MRI Database Schema

Objectives

This class was designed to give readers a basic understanding of the main tables in the MRI

modules GL, AP, CM, and RM. The goal of the class is to provide an overview of the key tables

and fields in each module, the relationships between these tables, and some information about

how and when the tables are populated.

The class assumes a basic knowledge of SQL queries, but the queries needed for this class are

generally of the format:

SELECT * FROM table WHERE field=‘value‘

For example, to find all records in the BLDG table in the state of Ohio, the query is:

SELECT * FROM BLDG WHERE STATE=‘MD‘

Armed with this query and a basic understanding of the MRI database schema, you should be

able to put most of the information in this class to good use.

Table conventions:

For all tables in the database, the primary key is indicated by a * in front of the appropriate field

or fields.

Field Description

*TABLENAME Table name

DESCRPN Table description

APPLNID Application/module:

CM,RM,AP,etc.

MRI System Tables

The following tables are part of every MRI database and describe the database structure itself.

These can be useful for finding a particular field or table based on their descriptions.

MRI uses these tables to keep track of tables, fields, and relationships within the database.

During table modifications in Table Design or during an upgrade, these tables are maintained as

modifications are made to the table. Conversely, any changes made to MRI tables outside of

MRI may result in limited functionality and/or loss of the fields during an upgrade.

Table Description

MRITABLE All tables in the database

MRIFIELD All fields in all tables

MRIINDEX Indexes, primary keys for each table

MRIRELN Foreign key relationships between tables

MRITABLE

MRITABLE lists every table in the database, along with descriptions, which module each

table belongs to, the date and user who created it, etc.

Field Description

*TABLENAME Table name

DESCRPN Table description

APPLNID Application/module:

CM,RM,AP,etc.

Some useful queries:

List all non-MRI (custom) tables:

SELECT * FROM MRITABLE WHERE MRITABLE=’N’

Find tables containing ―amenities‖ in the description:

SELECT * FROM MRITABLE WHERE DESCRPN LIKE ‘%AMENTITIES%’

MRIFIELD

MRIFIELD lists every field in every table in the database, along with information about the

field type, length, etc.

Field Description

*TABLENAME Table name

*FIELDNAME Table description

DESCRPN Application/module:

CM,RM,AP,etc.

FLDTYPE A=Alphanumeric (character)

N=Numeric

D=Date

C=Counter (autonumber)

M=Memo (text)

I=Identity (auto timestamp)

B=Binary

FLDLENGTH For A-type fields, indicates the

character length. For N-type,

determines the SQL data type if

FLDNDECS is 0: 1-4=smallint, 5-

9=int, 10+=float. If FLDNDECS

is 2, the datatype is money. For

all other non-zero values, the

datatype is float.

SYSFIELD System catalog reference

LOOKUP Indicates a foreign key

relationship/lookup to another

table. If the LOOKUP is

―CODELIST‖, look to the

VALIDATION field for CT= for

the codetype.

VALIDATION Contains any validation rules for

the field. Also contains CT= for

CODELIST lookups. For

versions prior to 4.0, field that

have been customized will contain

~USERCHANGES= x ~ in this

field.

REQUIRED Indicates a mandatory field.

Some useful queries:

Find all the required fields in the BLDG table:

SELECT * FROM MRIFIELD WHERE TABLENAME=’BLDG’ AND

REQUIRED=’Y’

Show all fields in the ‗JOURNAL‘ table with field lookups:

SELECT * FROM MRIFIELD WHERE TABLENAME=’JOURNAL’ AND LOKUP IS

NOT NULL

Show all fields in the database that store account numbers:

SELECT * FROM MRIFIELD WHERE SYSFIELD=’ACCTNUM’

MRIINDEX

MRIINDEX lists every index, including primary keys, on every table in the database.

Field Description

*TABLENAME Table name

*INDEXNAME Index name (primary key indexes

are named UPKCL_tablename)

INDEXFIELD The field or fields that make up

the index.

PRIMARYIDX Indicates whether the index is the

primary key.

Some useful queries:

Find the primary key fields for table RMLEASE:

SELECT * FROM MRIINDEX WHERE TABLENAME=’RMLEASE’

MRIRELN

The MRIRELN table lists every relationship (foreign key) between any two given tables in

the database. All relationships in MRI are ―many-to-one‖, meaning that for one record in the

―primary‖ table, many records can exist in the ―foreign‖ table. Consider the relationship

between MRITABLE and MRIFIELD. In the MRIFIELD table, the TABLENAME field

must reference a valid table in MRITABLE—but for any given record in MRITABLE, there

can be (and almost always are) many records in MRIFIELD. In this relationship,

MRITABLE is considered to be the ―primary‖ table (the ―one‖ side of the relationship), and

MRIFIELD is considered to be the ―foreign‖ table (the ―many‖ side of the relationship).

MRIRELN is used by MRI to determine join relationships, lookup lists, and a variety of other

functionality. It‘s also very useful for determining entity relationships when you‘re writing

queries or trying to find out about the database schema.

Field Description

*PRIMARYTBL The primary or ―one‖ table in the

relationship.

*FOREIGNTBL The foreign or ―many‖ table in the

relationship.

RELATEDFLD The field or fields that are shared

between the two tables.

Some useful queries:

What fields in the BLDG table reference other tables in the database?

SELECT * FROM MRIRELN WHERE FOREIGNTBL=’BLDG’

What fields elsewhere in the database reference the BLDG table?

SELECT * FROM MRIRELN WHERE PRIMARYTBL=’BLDG’

General Ledger

The tables listed below are the most important in the General Ledger module.

Table Description

GLCD Chart of accounts header table

GACC Chart of accounts

JOURNAL Current and future period detail transactions

GHIS Historical detail transactions

GLSUM Summary account balances

ENTITY Financial property table

PERIOD GL calendar

BMAP Defines the relationship between entities, banks, and cash

accounts in your chart.

GLCD/GACC

GLCD contains one record for each chart of accounts in MRI. The default chart is ―MR‖. To

enable multiple charts, the management option ―Multiple Ledger Codes‖

(MGNT.MULTLED) must be set to ―Y‖, which is the default value.

The GLCD values define the format of your account numbers, such as length, major/minor

segments, and display format.

Field Description

*LEDGCODE The two-character ledger code

DESCRPTN Chart description

ACCTLGT The total length of the account,

not including dashes or the ledger

code.

ACCTDSP Display format. Use 0 or 9 for

digits, @ for characters.

ACCTNUM Determines if the account

numbers are numeric only.

ACCTMAJ The length of the major account

segment. Must be less than or

equal to the ACCTLGT.

REARNACC The retained earnings account for

the chart. All P&L accounts will

be closed to this account at year

end, and all balance sheets will

sum P&L to this account at

runtime.

GACC contains one record for each account in the chart. If the major account length

(GLCD.ACCTMAJ) is different from the account length (GLCD.ACCTLGT), any account

with all 0‘s in the minor position will be considered a major account. For example, if the

account length is 7 and the major account length is 4, major accounts will be those ending in

―000‖. The major account must be entered before any minor account can be added.

Field Description

*ACCTNUM The account number, including

the ledger code. (i.e.

MR1000111)

ACCTNAME The name of the account

TYPE This can be I (income/expense), B

(balance sheet), or C (cash). C

accounts are essentially balance

sheet accounts, but are treated

differently by the Cash Balance

report. I accounts are closed to

Retained Earnings at year end and

are summed to RE at runtime for

any balance sheet report.

Some useful queries:

Display all cash accounts:

SELECT * FROM GACC WHERE TYPE=’C’

Return all accounts in the MR chart, without the ledger code:

SELECT SUBSTRING(ACCTNUM,3,7) FROM GACC WHERE ACCTNUM LIKE ‘MR%’

(this assumes an account length of 7)

JOURNAL/GHIS

All detail transactions in GL are stored in JOURNAL or GHIS according to their period.

Current and future transactions are stored in JOURNAL; historical transactions are stored in

GHIS.

Field Description

*PERIOD Period in YYYYMM format

*REF 6-character journal reference #

*SOURCE 2-character journal source.

AP/CM/RM are reserved for the

―create journal entries‖ processes.

*SITEID 2-character site id or @

*ITEM Item number of the detail line

within a set of journal entries.

ENTITYID A valid entity from ENTITY

ACCTNUM A valid account from GACC

DEPARTMENT A valid department from GDEP

JOBCODE A valid jobcode from GJOB

AMT The item amount. Debits are

stored as positive, credits as

negative.

DESCRPN Journal description

ENTRDATE Entry date. Typically should be

within the month specified in

PERIOD.

BASIS A valid basis from BTYP

REVERSAL (JOURNAL only) Indicates that

the journal entry should be

reversed next month.

STATUS (JOURNAL only) P for ―posted‖,

U for ―unposted‖, or S for

―system posted‖ (used by create

journal entries programs)

BALFOR (GHIS only) B for entries in the

balance forward period; N for all

other activity.

At month-end close, all JOURNAL entries are moved to the GHIS table. (Additionally, any

standard entries in GSTD are created in the new period, and any entries marked with a

REVERSAL flag are copied to the new period with their amounts reversed).

Each ―set‖ of journal entries is identified by a combination of PERIOD/ REF/ SOURCE/

SITEID. Within each set of entries, the ITEM field counts from 1 to x. There cannot be

more than 32767 lines in a journal entry.

Within any given journal entry, the AMT column should always add up to 0, because debits

(positive) should equal credits (negative).

GHIS has a special flag, BALFOR, which indicates if the activity is to be recorded in the

"balance forward period", sometimes called the 13th period. Balance forward entries are

recorded after the year-end period, and before the year-open period. The actual value of

PERIOD is the same as the year-open period (i.e. January). During the GL year-end close,

the year-end balance is computed for each account and entered in the balance forward period

in GHIS. Any year-end closing activity, such as closing P&L accounts to retained earnings,

or other closing accounts as indicated in GCLS, are also made in the balance forward period.

Some useful queries:

Show all journal entries for a given account:

SELECT * FROM JOURNAL WHERE ACCTNUM=’MR1000111’ AND ENTITYID=’100’

AND BASIS=’A’

Show the balance forward activity for a given account:

SELECT * FROM GHIS WHERE ACCTNUM=’MR1000111’ AND ENTITYID=’100’ AND

BASIS=’A’ AND PERIOD=’200601’ AND BALFOR=’B’

Find any journal entry that is out of balance:

SELECT PERIOD, REF, SOURCE, SITEID, SUM(AMT) FROM JOURNAL GROUP BY

PERIOD, REF, SOURCE, SITEID HAVING SUM(AMT)<>0

GLSUM

All activity entered into JOURNAL or GHIS is accumulated into balances in GLSUM by

ACCTNUM, ENTITYID, PERIOD, BASIS, and DEPARTMENT.

Field Description

*ACCTNUM A valid account from GACC

*ENTITYID A valid entity from ENTITY

*DEPARTMENT A valid department from GDEP

*BASIS A valid basis from BTYP

*PERIOD Period in YYYYMM format

*BALFOR B for balfor balances, N for

activity

ACTIVITY The total activity for the period or

balance forward period. Debit

balances are positive, credit

balances negative.

Balances in GLSUM are kept up-to-date by SQL triggers. As an account is debited, the

appropriate balance(s) in GLSUM is added to. As an account is credited, the appropriate

balance(s) in GLSUM is subtracted from.

The BALFOR=B record in GLSUM indicates the year-opening balance for a given account.

All other records (BALFOR=N) indicate the monthly activity for a given account. To

compute the year-end balance for an account, find the most recent B record, and add all

subsequent records:

SELECT SUM(ACTIVITY) FROM GLSUM WHERE ACCTNUM='MR1000111' AND

ENTITYID='100' AND DEPARTMENT='@' AND BASIS='A' AND PERIOD>= '200601'

All financial reports in MRI, aside from the general journal report, compute account balances

and activity from GLSUM, not from the detail tables JOURNAL/GHIS. Consequently, it‘s

important that the GLSUM table contain an accurate reflection of GL balances. Normally the

SQL triggers will keep GLSUM up-to-date no matter how the data comes into

JOURNAL/GHIS. If GLSUM is incorrect, it can be rebuilt using the Rebuild Summary

Table option in MRI GL for Windows.

ENTITY

An entity in MRI represents the financial aspect of a property. Typically an entity represents

a single building or property, but you can set up an entity that has no properties associated

with it (in the case of a cost center) or multiple properties (in the case of an office park or

multi-use building).

Field Description

*ENTITYID Entity id

NAME Entity name

PROJID A valid project from PROJ

CURPED The current GL period in

YYYYMM format

YEAREND The next year end period in

YYYYMM format.

PERIOD

The PERIOD table keeps track of the current GL and AP period for each entity.

Field Description

*ENTITYID A valid entity id from ENTITY

*PERIOD Period in YYYYMM format.

DATECLSD Date of GL close. Should be

blank only for current and future

GL periods.

BALFOR Indicates that the period is a

balance-forward period. Should

be one per year, and the calendar

should start with a B record.

APCLOSED Indicates whether AP has been

closed for the period. Should only

be ―Y‖ for the last (most recent)

record.

The financial calendar for a given entity is a combination of the PERIOD records, and the

fields CURPED and YEAREND in ENTITY.

The calendar should start with a B (balance forward) period, and every 12th record after

should also be a B. The DATECLSD field should be populated for every period except the

current GL period, and any future GL periods if allowed by ENTITY.MAXOPEN.

Only the last record should have APCLOSED='N'. Closing AP is what creates the next

PERIOD record, always. For a year-end close, the AP close will create the new (January)

record with a BALFOR value of N. This will be changed to a B by the year-end close.

Balances for all GL reports are computed by going back to the last B period and adding

activity since. So, having an incorrect or missing B record can cause your GL balances to be

computed incorrectly on reports. Also, some parts of the program compute the current GL

period by looking at the oldest PERIOD record with a blank DATECLSD. Consequently,

having an old record in the calendar with a blank DATECLSD can also cause subtle GL

problems in some reports.

The current GL period should be first (oldest) record with a blank DATECLSD, and should

match what's in ENTITY.CURPED. The value of ENTITY.YEAREND should be 12

months later than the last (latest) B record in PERIOD.

Some useful queries:

To find the current GL period for an entity:

SELECT CURPED FROM ENTITY WHERE ENTITYID='100'

SELECT MIN(PERIOD) FROM PERIOD WHERE ENTITYID='100' AND DATECLSD IS

NULL

To find the current AP period for an entity:

SELECT MAX(PERIOD) FROM PERIOD WHERE ENTITYID='100' AND APCLOSED='N'

To find the most recent and next year end period:

SELECT MAX(PERIOD) FROM PERIOD WHERE ENTITYID='100' AND BALFOR='B'

SELECT YEAREND FROM ENTITY WHERE ENTITYID='100'

BMAP

The BMAP table defines the relationship between entities, banks, and cash accounts in your

chart.

Field Description

*ENTITYID A valid entityid from ENTITY

*CASHTYPE A valid cash type from CTYP

BANKID A valid bankid from BANK.

ACCTNUM A valid cash account from GACC.

The BMAP table is involved in any cash transaction involving the entity, including checks

cut from Accounts Payable and cash received in Commercial Management or Residential

Management. The combination of ENTITYID and CASHTYPE is used in the subledgers to

identify which bank to pay checks to (in the case of AP), and which GL accounts to

debit/credit when journal entries are created (in the case of AP, CM, and GL.

Accounts Payable

The tables listed below are the most important in the Accounts Payable module.

Table Description

VEND Vendor master table

BANK Bank master table

SESS Invoice sessions

INVC Invoice header table

HIST Invoice detail table

SCHK Check detail table

CHKBATCH Check selection batch header

SELCHK Check selection detail

VEND

The VEND table contains a record for each vendor.

Field Description

*VENDID Vendor ID

VENDNME1 Vendor Name

BANK

The BANK table contains a record for each bank.

Field Description

*BANKID Bank ID

BANKNAME Bank Name

STATUS C = Closed

I = Inactive

P = Pending

SESS

The SESS table contains a record for each invoice session. If ―Session Reporting‖ is enabled

(APOPTION.SESSION), sessions are used to group invoices together during invoice entry.

Aside from reporting, AP sessions have no impact on the data.

Field Description

*SESSION Session ID

DESCRPTN Session description

EXPPED The expense period for the

session in YYYYMM format.

ENTITYID A valid entity from ENTITY. If

APOPTION.SESSENTITY

(―Single Entity Per Session‖) is

enabled, this field is enabled in

invoice entry.

Some useful queries:

List all invoices for a given session:

SELECT * FROM INVC WHERE SESSION= ‘xxxx’

List all sessions for a given period:

SELECT * FROM SESSION WHERE EXPPED=’200605’

INVC/HIST

INVC and HIST contain the transaction detail for accounts payable. For any vendor invoice,

there will be one record in INVC (the invoice header), and at least one record in HIST (the

invoice detail).

INVC Fields Description

*VENDID A valid vendor ID from VEND.

*INVOICE Invoice number

*EXPPED The expense period for the

invoice in YYYYMM format.

INVCDATE The entry date of the invoice.

DUEDATE The due date for the invoice

INVCAMT The original invoice amount.

Should be the sum of

HIST.ITEMAMT for all HIST

records for this invoice.

PAIDAMT The actual invoice amount paid.

SESSION If Session Reporting is enabled,

this will contain a valid session id

from SESSION.

HIST Fields Description

*VENDID A valid vendor id from VEND.

*INVOICE Invoice number

*EXPPED The expense period for the

invoice in YYYYMM format.

*ITEM The detail item number within the

invoice.

REF Line item description.

ENTITYID A valid entity from ENTITY.

ACCTNUM The expense account for the line

item. Must be a valid account in

GACC.

ITEMAMT The line item amount.

STATUS R = Ready to pay

H = Hold

P = Paid

V = Voided

W = Withdrawn

C = Carried Forward

U = Unused check

D = Deleted

M = Manual check

I = Info Only

CHECKNO Check number if paid

CHECKDT Check date if paid

CASHTYPE Cash type, used to determine

appropriate bank and cash account

from the BMAP table.

EXPPOST

CKPOSTED

The period in which the expense

and check sides of the detail line

were posted to GL.

EXPGLREF

CKACCRLREF

CKCASHGLREF

The GL reference number

(JOURNAL.REF) of the expense,

accrual check, and cash check

entries in GL.

For a given invoice, the HIST record will always contain at least one detail record. Other line

items will be created by MRI for voided checks, taxes, and other information related to the

payment of the invoice.

The combination of EXPPED, INVOICE, and VENDID uniquely identifies each invoice,

with HIST.ITEM numbers counting from 1 to x for all detail. Consequently, the same

invoice number can be used repeatedly (in different periods) for the same vendor.

When checks are paid for the invoice, the check number and date is recorded in the

appropriate HIST record. At the same time, a record is created in SCHK (see below) with the

details of the check. Since a single check may pay multiple line items, the SCHK record will

show the total amount paid, which will be the sum of all HIST.ITEMAMTs for items paid.

When journal entries are created from AP, the HIST.ACCTNUM is used for the expense

account for each line item, and the ENTITY.APACCTNUM is used for the accounts payable

(debit) side of the journal entry, in the case of accrual accounting. For paid items, the cash

account specified in BMAP is used, based on the ENTITYID/CASHTYPE specified in HIST.

Periods and GL reference numbers are recorded in the fields as listed above. The

JOURNAL.SOURCE field in GL will be populated with ―AP‖.

Some useful queries:

Show all AP details related to a give GL reference. :

SELECT * FROM HIST WHERE EXPGLREF='006149' AND EXPPED='200303

Find all HIST records that have no corresponding INVC record (―orphan records‖):

SELECT * FROM HIST WHERE NOT EXISTS (SELECT * FROM INVC WHERE

INVC.EXPPED=HIST.EXPPED AND INVC.INVOICE=HIST.INVOICE AND

INVC.VENDID=HIST.VENDID)

Find all instances where the same invoice has been entered more than once for the same

vendor:

SELECT VENDID,INVOICE,COUNT(*) FROM INVC GROUP BY VENDID,INVOICE

HAVING COUNT(*) > 1

SCHK

The SHK table contains a record for each check paid out of MRI.

Field Description

*BANKID The bank out of which the check

was paid. Must be a valid bank in

BANK.

*CHECKNO The check number.

VENDID The vendor the check was paid to.

Must be a valid vendor in VEND.

CHECKDT The date of the check.

CHECKPD The period in which the check

was paid.

CHECKNET The check amount

CKSTATUS U = Unused

C = Cleared

X = In process (bankrec)

V = Void

O = Outstanding (bankrec)

Some useful queries:

List all outstanding checks for bank 100:

SELECT * FROM SCHK WHERE CKSTATUS=’O’ AND BANKID=’100’

Find a given check for a given bank:

SELECT * FROM SCHK WHERE BANKID=’100’ AND LTRIM(CHECKNO)=’1593’

CHKBATCH/SELCHK

During check printing, all HIST items selected for printing are listed in a check batch.

CHKBATCH contains a header record for the batch, and SELCHK lists the individual line

items to be paid.

CHKBATCH Fields Description

*BATCHID Batch ID number

DESCRIPTION Batch description

CHECKDATE Check date for all checks in this

batch.

SELCHK Fields Description

*BATCHID The selection batch id from

CHKBATCH

*VENDID

*INVOICE

*EXPPED

*ITEM

These fields identify the HIST

record being paid.

BANKID The bank to be paid from. Must

be a valid bank from BANK.

ENTITYID The entityid from which the check

is paid. Should match

HIST.ENTITYID.

CHECKAMT The item amount to be paid.

CHKBATCH and SELCHECK only exist while the checks are being selected for payment.

After the checks are paid, the check selection batch is deleted.

Commercial Management

The tables listed below are the most important in the Commercial Management module.

Table Description

BLDG Building table

CMPD Current CM period for each building

SUIT Suite table

MOCCP Master Occupants

LEAS Lease table

CMRECC Recurring charges

INCH/SECINCH Income categories

GLMT/SECGLMT CM/GL master interface chart

INCH/SECINCH

Income categories such as ―rent‖ or ―common area maintenance‖ are setup as codes in the

INCH and SECINCH tables. INCH contains rental codes, SECINCH contains security

deposit codes.

Field Description

*INCCAT/SECINCCAT Income category code

DESCRPTN Description

PRIORITY When cash receipts are

automatically allocated to open

charges, indicates the priority of

each category. Lower numbers

indicate a higher priority.

RPTTYPE Indicates where charges of this

category will be listed on the rent

roll:

B = Base rent

R = Recoveries

O = Other

GLMT/SECGLMT

―Master Interface Chart‖: The GLMT and SECGLMT tables determine how journal entries in

GL will be created from transactions in CM.

Field Description

*LEDGCODE A valid GL ledger code from

GLCD.

*INCCAT A valid income category from

INCH.

*SRCCODE Source code or ―type‖ of

transaction.

CH = CH/NC transactions

CR = CR/PR transactions

CN = CN transactions

*CASHTYPE The cash type for cash

transactions. Must be a valid cash

type from CTYP.

ADEBITAC

ACREDTAC

The debit and credit GL accounts

for each transaction, respectively.

Each account must be a valid

CDEBITAC

CCREDTAC

account in GACC.

When GL journal entries are created from CM, each transaction results in a debit and credit

in JOURNAL. The GLMT/SECGLMT tables map each type of transaction to appropriate

GL accounts. For cash transactions, the cash account is determined by the BMAP table.

For CH (charge) transactions, the CH code in GLMT is used to obtain the debit and credit

accounts needed. For NC (non-cash adjustment) transactions, the CH code in GLMT is also

used, but the debit and credit accounts are reversed. The same rules are used for CR (cash

receipt) and PR (payment reversal) transactions.

The GLBLDG and SECGLBLDG tables can be populated if a given building uses different

accounts from the master interface (GLMT) mapping.

BLDG

The BLDG table contains one record for each commercial building.

Field Description

*BLDGID Building ID

BLDGNAME Building name

LLRDID A valid landlord id from the

LLRD table.

MNGRID A valid manager id from the

MNGR table.

ENTITYID Associates the building with an

entity from the ENTITY table.

BILLDATE Indicates the most recent rentup

date.

CMPD

Stores the current CM period for each building.

Field Description

*BLDGID Building ID

CURPD Current CM period in YYYYMM

format.

SUIT

The SUIT table contains one record for each suite in every building.

Field Description

*BLDGID Building ID from BLDG table

*SUITID Suite ID

SUITENO The physical suite number for

address purposes

FLOORNO The floor number, used for

stacking plans.

SUITSQFT The current square footage

Useful queries:

Show all suites for a given building:

SELECT * FROM SUIT WHERE BLDGID=’100’

Find the total square footage for all suites in a building:

SELECT SUM(SUITSQFT) FROM SUIT WHERE BLDGID=’100’

MOCCP/LEAS

The LEAS table holds one record for each lease. A given LEAS record can be thought to

represent the physical lease document for a particular suite. The MOCCP table represents the

―master occupant,‖ which represents a tenant. A single MOCCP record might be associated

with one LEAS record, or if the tenant is occupying multiple spaces, there can be many

LEAS records associated with a single MOCCP.

When a new lease is created in MRI, both an MOCCP and LEAS record are created.

MOCCP Fields Description

*MOCCPID Master occupant ID

OCCPNAME Occupant name.

LEAS Fields Description

*BLDGID Building ID from BLDG table

*LEASID Lease ID

SUITID Suite ID from the SUIT table

MOCCPID Master occupant ID from the

MOCCP table.

GENERATION The generation or revision

number of the lease. The initial

LEAS is always generation 1. A

renewal or change in terms results

in a new LEAS record with one

higher generation number.

ADDLSPACE Will be ―N‖ for the primary suite.

If multiple suites are associated

with the MOCCPID, all other

LEAS records after the primary

space will be marked with ―Y‖

OCCPNAME Occupant name

OCCPSTAT Occupancy status:

C = Current

I = Inactive

N = New

P = Proposed

EXECDATE

RENTSTRT

OCCUPNCY

BEGINDATE

EXPIR

VACATE

STOPBILLDATE

Dates indicating execution, rent

start, occupancy, lease begin,

expiration, vacate, and stop bill

dates.

For any given tenant, there will always be at least one LEAS and one MOCCPID. The LEAS

record will have a GENERATION of 1, and ADDLSPACE=‘N‘. If additional spaces are

added to the main lease, additional LEAS records will be added with the same

GENERATION and ADDLSPACE=‘Y‘. Lease renewal or revision of terms will result in a

new set of LEAS records with GENERATION=2 and so forth.

Because each LEAS has its own terms (start and vacate date, etc) and its own set of recurring

charges (see CMRECC below), a single occupant can be billed different rates for the different

spaces that they occupy. Alternately, all billing can be assigned to the main LEAS, with the

additional LEAS records used merely to show occupancy. The field LEAS.PRIMARYCHGS

determines if charges are allowed only on the primary lease, or on all leases associated with

the MOCCPID.

Useful queries:

Show all leases for a given MOCCPID:

SELECT * FROM LEAS WHERE MOCCPID=’STEVESM’

Show only leases with the most recent GENERATION number:

SELECT * FROM LEAS WHERE MOCCPID=’STEVESM’ AND GENERATION = (SELECT

MAX(GENERATION) FROM LEAS WHERE MOCCPID=’STEVESM’)

CMRECC

All past, current, and future recurring charges for each lease are stored in the CMRECC table.

Field Description

*BLDGID Building ID from BLDG table

*LEASID Lease ID from LEAS table

*INCCAT Income category form the INCH

table

*EFFDATE Effective (starting) date for the

charge

AMOUNT Charge amount

FRQUENCY Charge frequency. For a list of

frequencies, run: SELECT *

FROM CODELIST WHERE

CODETYPE=‘BILLFREQ‘

LASTBILL The date through which the

charge has been billed. If rentup

was run on 6/1/06, a monthly

charge would have a LASTBILL

date of 6/30/06.

ENDDATE The date on which the charge

ends. Should typically be blank,

unless the charge ends mid-lease

and is not replaced by a

subsequent charge for the same

INCCAT.

INEFFECT Indicates if the charge is currently

in effect. For any given lease

(BLDGID/LEASID), there should

only be one CMRECC record for

each INCCAT with

INEFFECT=‘Y‘.

Each recurring charge for a given lease is stored as a record in the CMRECC table. If a

charge changes mid-lease, multiple CMRECC records are created with each charge amount,

with the appropriate EFFDATE for each amount.

CM Rentup uses the CMRECC table to generate CMLEDG records. Rentup also maintains

the INEFFECT and ENDDATE columns as needed.

Useful queries:

Show all charges in effect for a given lease:

SELECT * FROM CMRECC WHERE BLDGID=’100’ AND LEASID=’000005’ AND

INEFFECT=’Y’

Show all charges in effect on a given date for a given lease:

SELECT * FROM CMRECC WHERE BLDGID=’100’ AND LEASID=’000005’ AND

EFFDATE = (SELECT MAX(EFFDATE) FROM CMRECC B WHERE

B.BLDGID=CMRECC.BLDGID AND B.LEASID=CMRECC.LEASID AND

B.INCCAT=CMRECC.INCCAT AND EFFDATE <= ‘3/1/06’)

Residential Management

The tables listed below are the most important in the Residential Management module.

Table Description

RMPROP RM Property table

RMPD RM Current period table

RMBLDG RM Building table

CLSS Unit class table

UNIT Unit table

RMLEASE RM lease table

RMRECC Recurring charges

NAME Residents, applicants, and prospects

PROSPECT Prospect table

CHGCODE/SECCODE Charge code table

RMGLMT/RMSECGLMT RM Master interface chart

SCHD Scheduler table

CHGCODE/SECCODE

Charge code categories such as ―rent‖ or ―utilities‖ are setup as codes in the CHGCODE and

SECCODE tables. CHGCODE contains rental codes, SECCODE contains security deposit

codes.

Field Description

*CHGCODE/SECCODE Charge code ID

DESCRPTN Description

CLASS A = Allowance (concessions)

R = Rentable items

M = Memo

O = Other

POTENTIAL Indicates whether the charge code

is included in vacancy potential

calculations.

PRIORITY When cash receipts are

automatically allocated to open

charges, indicates the priority of

each category. Lower numbers

indicate a higher priority.

RMGLMT/RMSECGLMT

―Master Interface Chart‖: The RMGLMT and RMSECGLMT tables determine how journal

entries in GL will be created from transactions in RM.

Field Description

*LEDGCODE A valid GL ledger code from

GLCD.

*CHGCODE A valid charge code from

CHGCODE

*SRCCODE Source code or ―type‖ of

transaction.

CH = CH/NC transactions

CR = CR/PR transactions

CN = CN transactions

*CASHTYPE The cash type for cash

transactions. Must be a valid cash

type from CTYP.

ADEBITAC The debit and credit GL accounts

ACREDTAC

CDEBITAC

CCREDTAC

for each transaction, respectively.

Each account must be a valid

account in GACC.

When GL journal entries are created from RM, each transaction results in a debit and credit

in JOURNAL. The RMGLMT/RMSECGLMT tables map each type of transaction to

appropriate GL accounts. For cash transactions, the cash account is determined by the

BMAP table.

For CH (charge) transactions, the CH code in RMGLMT is used to obtain the debit and credit

accounts needed. For NC (non-cash adjustment) transactions, the CH code in RMGLMT is

also used, but the debit and credit accounts are reversed. The same rules are used for CR

(cash receipt) and PR (payment reversal) transactions.

The RMGLBLDG and RMSECGLBLDG tables can be populated if a given building uses

different accounts from the master interface (RMGLMT) mapping.

RMPROP

This table lists all properties in the database. A property typically represents an entire

residential apartment complex.

Field Description

*RMPROPID Property ID

PROPNAME Property name

ENTITYID Ties the property to a valid entity

from the ENTITY table.

BILLDATE The most recent RENTUP date.

PROCDATE Actual day on which RENTUP

was run.

WEB Indicates if the property is

available in MRI Web.

RMBLDG

Each physical building in a residential property is recorded as a different record in the

RMBLDG table. This table is used mostly for grouping and unit identification.

Field Description

*RMPROPID Property ID

*RMBLDG Building ID

DESCRPTN Building description

CLSS

Each type or class of unit within a property is listed as a record in the CLSS table. Default

information for each unit in a class includes pricing, amenities, number of beds and baths,

and square footage.

Field Description

*RMPROPID Property ID

*CLASSID Unit class ID

UNITKIND Unit ―kind‖ (highrise, garden,

etc). To see all unit kinds, run

SELECT * FROM CODELIST

WHERE

CODETYPE=‘UNITKIND‘

NMBRBED Descriptive number of beds

NMBRBATH Descriptive number of baths

UNIT

The UNIT table contains a record for each unit in a property.

Field Description

*RMPROPID Property ID

*RBLDGID RM Building ID from RMBLDG

*UNITID Unit ID

CLASSID Unit class id from CLSS

USTATUS Unit status. Typical values are:

A = Vacant available

B = Notice available

O = Occupied

For a complete list of statuses, run

SELECT * FROM CODELIST

WHERE

CODETYPE=‘UNITUSTATUS‘

MAXCURLEA Maximum number of residents

allowed

NOCURLEA Number of current leases.

Useful queries:

Show all units for a given property:

SELECT * FROM UNIT WHERE RMPROPID=’800’

Show only vacant, available units:

SELECT * FROM UNIT WHERE RMPROPID=’800’ AND USTATUS=’A’

UNIT

The UNIT table contains a record for each unit in a property.

Field Description

*RMPROPID Property ID

*RBLDGID RM Building ID from RMBLDG

*UNITID Unit ID

CLASSID Unit class id from CLSS

USTATUS Unit status. Typical values are:

A = Vacant available

B = Notice available

O = Occupied

For a complete list of statuses, run

SELECT * FROM CODELIST

WHERE

CODETYPE=‘UNITUSTATUS‘

MAXCURLEA Maximum number of residents

allowed

NOCURLEA Number of current leases.

Useful queries:

Show all units for a given property:

SELECT * FROM UNIT WHERE RMPROPID=’800’

Show only vacant, available units:

SELECT * FROM UNIT WHERE RMPROPID=’800’ AND USTATUS=’A’

RMLEASE

Each residential lease is stored as a separate record in RMLEASE. Each new resident results

in a new RMLEASE record.

Field Description

*RMPROPID Property ID

*RBLDGID RM Building ID from RMBLDG

*UNITID Unit ID

*RMLEASE A numeric value representing the

lease number. The first lease in a

given unit is number 1. Each

subsequent lease or renewal

increments this number.

LEASNM Length of lease in months. MTM

is used for month-to-month

residents.

EXPIRE

OCCDATE

NOTDATE

VACATE

Dates representing the expiration,

occupy date, notice date, and

vacate date.

CURTERMSTART The start date of the current lease.

For first-year leases this is the

same as the OCCDATE

Useful queries:

Show the current lease for a given unit:

SELECT * FROM RMLEASE WHERE RMPROPID=’800’ AND RMBLDGID=’001’ AND

UNITID=’104’ AND VACATE IS NOT NULL

RMRECC

All past, current, and future recurring charges for each lease are stored in the RMRECC table.

Field Description

*RMPROPID Property ID from RMPROP table

*RMBLDGID Building ID from RMBLDG table

*UNITID Unit ID from UNIT table

*RMLEASE Lease ID from RMLEASE table

*CHGCODE Charge code from CHGCODE table

*EFFDATE Effective (starting) date for the

charge

AMOUNT Charge amount

FRQUENCY Charge frequency. For a list of

frequencies, run: SELECT * FROM

CODELIST WHERE

CODETYPE=‘CHGCODEFREQ‘

LASTBILL The date through which the charge

has been billed. If rentup was run on

6/1/06, a monthly charge would have

a LASTBILL date of 6/30/06.

ENDDATE The date on which the charge ends.

Should typically be blank, unless the

charge ends mid-lease and is not

replaced by a subsequent charge for

the same CHGCODE.

INEFFECT Indicates if the charge is currently in

effect. For any given lease

(RMPROPID/ RMBLDGID/

UNITID/ RMLEASE), there should

only be one RMRECC record for

each CHGCODE with

INEFFECT=‘Y‘.

Each recurring charge for a given lease is stored as a record in the RMRECC table. If a

charge changes mid-lease, multiple RMRECC records are created with each charge amount,

with the appropriate EFFDATE for each amount.

RM Rentup uses the RMRECC table to generate RMLEDG records. Rentup also maintains

the INEFFECT and ENDDATE columns as needed.

Useful queries:

Show all charges in effect for a given lease:

SELECT * FROM RMRECC WHERE RMPROPID=’800’ AND RMBLDGID=’A’ AND

UNITID=’A27’ AND RMLEASE=3 AND INEFFECT=’Y’

Show all charges in effect on a given date for a given lease:

SELECT * FROM RMRECC WHERE RMPROPID=’800’ AND RMBLDGID=’A’ AND

UNITID=’A27’ AND RMLEASE=3 AND EFFDATE = (SELECT MAX(EFFDATE) FROM

RMRECC B WHERE B.RMPROPID=RMRECC.RMPROPID AND

B.RMBLDGID=RMRECC.RMBLDGID AND B.UNITID=RMRECC.UNITID AND

B.RMLEASE=RMRECC.RMLEASE AND B.CHGCODE=CMRECC.CHGCODE AND

EFFDATE <= ‘3/1/06’)

NAME

All residents, coresidents, roommates, prospects, and applicants are stored in the NAME

table.

Field Description

*NAMEID Name ID

TYPE A = Applicant

P = Prospect

R = Resident

T = Transfer

STATUS A = Active (prospects, applicants)

C = Current

* = Co-resident

R = Other resident

N = New

O = Old

I = Inactive (prospects, applicants)

RMPROPID A valid property from RMPROP

RESPROPID

RMBLDGID

UNITID

RMLEASE

For all residents, these four fields

identify the RMLEASE record

associated with the resident.

NAMEGROUP For NAMEID of the main resident

(status=C) for the unit. For C-

status names, this is the same as

the NAMEID.

PREVNAMEID For transfers, the NAMEID of the

previous leas.

TABID For prospects, indicates the screen

in the application web pages (web

only)

Useful queries:

Show all current residents in a given property:

SELECT * FROM NAME WHERE RMPROPID=’800’ AND TYPE=’R’ AND STATUS=’C’

For a given co-resident, find the main resident:

SELECT * FROM NAME WHERE NAMEID = (SELECT NAMEGROUP FROM NAME

WHERE NAMEID=’HO0000000012’)

PROSPECT

All prospective residents are stored in PROSPECT as well as in NAME. When a guest card

or phone card is entered, a record is created in both NAME and PROSPECT.

Field Description

*NAMEID The NAMEID as recorded in the

NAME table.

TRDATE Traffic date

URPROP Property ID for this prospect,

from RMPROP.

URBUILD Building ID for reserved unit, if

any. From RMBLDG.

URUNIT Unit ID for reserved unit, if any.

From UNIT

Useful queries:

Show any prospect who has a given unit reserved:

SELECT * FROM PROSPECT WHERE URPROP=’800’ AND URBUILD=’A’ AND

URUNIT=’A29’

Show all prospect records for currently active prospects at a property:

SELECT * FROM PROSPECT WHERE NAMEID IN (SELECT NAMEID FROM NAME

WHERE RMPROPID=’800’ AND TYPE=’P’ AND STATUS=’A’)

SCHD

The SCHD table contains all activities from the RM scheduler, such as moveins, moveouts,

and transfers.

Field Description

RMPROPID Property ID from RMPROP

CODE Status code: O(pen) or C(losed)

DATESCHD Schedule date

*ITEM Unique identifier

NAMEID The name id associated with this

item, from the NAME table.

ACTION ―MOVE IN‖ or ―MOVE OUT‖

TEXT Item description

DATERCRD Date item was recorded

DATEDSPD Date item was processed

Useful queries:

Show all items scheduled on a given day:

SELECT * FROM SCHD WHERE DATESCHD=’3/15/06’

Show all items associated with a given NAMEID:

SELECT * FROM SCHD WHERE NAMEID=’MR10000015’

RM/CM Transaction Tables

Although the table names are slightly different, both RM and CM use nearly identical table

structures to store transactions:

CM Table RM Table Description

CMBTCH RMBTCH Batch header table

CMRCPT

CMMISC

CMBNONT

CMSDADJ

RMRCPT

RESCHGCRD

RMBMISC

RMSDADJ

Temporary tables for unposted batches

(receipts, charges, non-tenant, security)

CMLEDG

CMSDLG

RMLEDG

RMSDLG

Tenant and security deposit ledger tables

CMLEDGAPPLY

CMSDLGAPPLY

RMLEDGAPPLY

RMSDLGAPPLY

Ledger apply tables

CMBTCH/RMBTCH

For each transaction batch, there is one header record which contains the batch id, control

totals, and posted status.

Field Description

RMBATCHID/CMBATCHID Table name

TYPE Table description

STATUS Batch status: O(pen), C(losed), or

L(ocked)

BATCHDATE Batch date

DESCRPTN Batch description

CMRCPT,CMMISC,CMBNONT,CMSDADJ

RMRCPT,RESCHGCRD,RMBMISC,RMSDADJ

As a batch is being entered, but before it is posted, transactions are recorded to these

temporary tables. Resident receipts, miscellaneous billing adjustments, non-tenant

transactions, and security deposit transactions are each stored in a separate table until the

batch is posted. Although an unposted transaction might apply to a posted transaction (such

as a cash receipt applying to a posted charge), none of the transactions in this table have any

effect on the balances of posted transactions until they are posted.

CMLEDG/RMLEDG

CMSDLG/RMSDLG

Once a batch is posted, the transactions are created in either xxLEDG (for tenant/resident

transactions) or xxSDLG (for security deposit transactions).

Field Description

*TRANID A unique transaction ID

BLDGID/LEASID (CM) The building and lease id

associated with the transaction,

from LEAS.

RMPROPID/NAMEID (RM) The nameid of the resident

associated with the transaction,

from NAME.

NAMEGROUP (RM) The namegroup of the resident

associated with the transaction,

from NAME. For primary

residents, this is the same as

NAMEID. For co-residents, it is

the NAMEID of the primary

resident.

TRANDATE Transaction date

CHGCODE (RM) /

INCCAT (CM)

The chargecode or income

category for the transaction, from

CHGCODE or INCH.

SRCCODE The source code, or type of

transaction.

CH = Charge

NC = Non-cash adjustment

CR = Cash receipt

PR = Payment reversal

CN = Concession

NS = NSF check

CASHTYPE For cash transactions, the cash

type from CTYP

DESCRPTN Description

TRANAMT Transaction amount

OPENAMT The unapplied amount of the

transaction.

CHKDESC For cash transactions, the check

number of the receipt

RM/CMBATCHID Batch ID for this transaction, from

RMBTCH or CMBTCH

REFNMBR The TRANID of the

RMLEDG/CMLEDG that this

transaction was applied to.

PERIOD Period in YYYYMM format.

GLREF The GL reference number

(JOURNAL.REF) of the journal

entry created from this

transaction.

POSTED Posted, Y or N.

Each transaction (cash receipt, charge, adjustment) is listed as a separate record in the

appropriate ledger table. A transaction is initially entered with the TRANAMT and

OPENAMT columns the same. Once a transaction is applied against another transaction (a

receipt pays off a charge, for example, or a payment reversal reverses a receipt), the

OPENAMT is adjusted to show the unapplied amount. A charge which is fully applied has

an OPENAMT of 0.

When a transaction is applied against another transaction, the REFNMBR field of the first

transaction is set to the TRANID of the transaction it applied to. For example, if 000012, a

cash receipt, is applied to 000008, a charge, then the REFNMBR field in 000012 is set to

―000008‖:

TRANID INCCAT SRCCODE DESCRPTN TRANAMT OPENAMT REFNMBR

000008 RNT CH Autochg 100 0

000012 RNT CR Rent pymt. -100 0 000008

A transaction can only apply to a transaction with the same INCCAT or CHGCODE. A cash

receipt for RNT, for example, can‘t be applied to an outstanding charge for LAT. To apply a

RNT receipt to a LAT charge, the system creates two new transactions called a CreditApply

pair, sometimes called a PR/CR pair:

TRANID INCCAT SRCCODE DESCRPTN TRANAMT OPENAMT REFNMBR

000015 LAT CH Late fee 100 0

000016 RNT CR Rent pymt. -100 0

000017 RNT PR CreditApply 100 0 000016

000018 LAT CR CreditApply -100 0 000015

This shows that transaction 17, a payment reversal, was applied to transaction 16, the cash

receipt, to close the receipt. Then a new cash receipt, 000018, was created for INCCAT

―LAT‖, and applied to the original charge, 000015, to close it out.

Because a single transaction can apply to many transactions, as is the case when a single RNT

payment closes out multiple RNT charges, it is sometimes inadequate to have a single

REFNMBR to represent the TRANID of the applied transaction. For this reason, a special

―APPLY‖ table exists to track how each transaction applies to each other transaction. This is

explained in detail below.

When CM or RM Create Journal Entries is run, each transaction creates a debit/credit pair in

the JOURNAL table. This is done by consulting the appropriate GLMT table to find the

debit and credit accounts, and in the case of cash transactions, by looking at BMAP to find

the correct bank and cash account. When a transaction is journalized, the JOURNAL.REF

number is recorded in CMLEDG.GLREF or RMLEDG.GLREF.

Some useful queries:

Find all open transactions for a given resident:

SELECT * FROM RMLEDG WHERE NAMEID=’0000000088’ AND OPENAMT<>0

Find the current outstanding balance for a given lease:

SELECT SUM(TRANAMT) FROM CMLEDG WHERE BLDGID=’100’ AND

LEASID=’000005’

CMLEDGAPPLY/RMLEDGAPPLY

CMSDLGAPPLY/RMSDLGAPPLY

Any time a transaction applies to another transaction in CM or RM, the application is

recorded in the appropriate APPLY table.

Field Description

*TRANID The transaction being applied

*PTRANID The transaction being applied to.

AMT The amount of TRANID applied

to PTRANID.

BLDGID/LEASID (CM)

RMPROPID/NAMEID (RM)

The building and lease id

associated with the transaction,

from LEAS.

The nameid of the resident

associated with the transaction,

from NAME.

To understand the function of CMLEDGAPPLY (all the …APPLY tables work the same),

let‘s look at a simple transaction from above:

TRANID INCCAT SRCCODE DESCRPTN TRANAMT OPENAMT REFNMBR

000008 RNT CH Autochg 100 0

000012 RNT CR Rent pymt. -100 0 000008

The cash receipt 000012 was applied to the charge 000008, closing both transactions. Here‘s

how this transaction is recorded in CMLEDGAPLY:

TRANID PTRANID AMT

000012 000008 -100

For any transaction in CMLEDG, we can compute the OPENAMT by taking the TRANAMT

and doing two things:

1. Adding any CMLEDGAPPLY.AMT where the transaction appears as

CMLEDGAPPLY.PTRANID

2. Subtracting any CMLEDGAPPLY.AMT where the transaction appears as

CMLEDG.TRANID

In this case, the original TRANAMT for 000008 is 100. To this we add (-100), because

000008 shows up as the PTRANID in CMLEDGAPPLY. 000008 doesn‘t show up as

TRANID in CMLEDGAPPLY, so we subtract nothing. The new open balance is 100 + (-

100) = 0.

The original TRANAMT for 000012 is -100. To this we add nothing, because 000012 does

not show up as the PTRANID in CMLEDGAPPLY. But we do subtract (-100) from it,

because 000012 shows up as the TRANID in CMLEDGAPPLY. So the new balance is (-

100) – (-100) = 0.

The open amount for any transaction can always be recomputed as follows:

SELECT TRANAMT + (SELECT SUM(AMT) FROM CMLEDGAPPLY WHERE

PTRANID=’000012’) – (SELECT SUM(AMT) FROM CMLEDGAPLY WHERE

TRANID=’000012’) FROM CMLEDG WHERE TRANID=’000012’

This query simply takes the original TRANAMT, adds any amounts where the transaction is

found as a CMLEDGAPPLY.PTRANID, and subtracts any amounts where the transaction is

found as a CMLEDGAPPLY.TRANID.

In some cases, the TRANID and PTRANID are reversed in CMLEDGAPPLY. For example,

the transaction above might be recorded like this:

TRANID PTRANID AMT

000008 000012 100

Notice that the AMT is now recorded as a positive 100. Although the transaction is recorded

―backwards‖ in CMLEDGAPPLY, the calculation still works:

The open amount for transaction 000008 is 100 (the original TRANAMT), plus nothing

(since 000008 does not appear in CMLEDGAPPLY.PTRANID), minus 100, since 000008

does show up as CMLEDGAPPLY.TRANID. The new open amount is 100 + 0 – 100 = 0.

The sign of CMLEDGAPPLY insures that the appropriate balances work out, regardless of

which transaction is chosen as TRANID and which is chosen as PTRANID.

Let‘s take a look at the creditapply transaction we looked at above:

TRANID INCCAT SRCCODE DESCRPTN TRANAMT OPENAMT REFNMBR

000015 LAT CH Late fee 100 0

000016 RNT CR Rent pymt. -100 0

000017 RNT PR CreditApply 100 0 000016

000018 LAT CR CreditApply -100 0 000015

In CMLEDGAPPLY, this is recorded as such:

TRANID PTRANID AMT

000017 000016 100

000018 000015 -100

 Or, possibly, it might look like this:

TRANID PTRANID AMT

000016 000017 -100

000015 000018 100

In either case, the records in CMLEDGAPPLY record the application of transaction 000017

to transaction 000016, and that of 000018 to 000015.

Some useful queries:

To find the outstanding balance of any given transaction:

SELECT TRANAMT + (SELECT SUM(AMT) FROM RMLEDGAPPLY WHERE

PTRANID=‘000016‘) – (SELECT SUM(AMT) FROM RMLEDGAPPLY WHERE

TRANID=‘000016‘) FROM RMLEDG WHERE TRANID=‘000017‘

